Атомы большинства элементов не суще­ствуют отдельно, так как могут взаимодействовать между собой. При этом взаимодействии образуются более сложные части­цы.

Природа химической связи состоит в действии электростатических сил, которые являются силами взаимодействия между электричес­кими зарядами. Такие заряды имеют электроны и ядра атомов.

Электроны, расположенные на внешних электронных уровнях (валентные электроны) находясь дальше всех от ядра, слабее всего с ним взаимодействуют, а значит способны отрываться от ядра. Именно они отвечают за связывание атомов друг с другом.

Типы взаимодействия в химии

Типы химической связи можно представить в виде следующей таблицы:

Характеристика ионной связи

Химическое взаимодействие, которое образуется из-за притяжения ионов , имеющих разные заряды, называется ионным. Такое происходит, если связываемые атомы имеют существенную разницу в электроотрицательности (то есть способности притягивать электроны) и электронная пара переходит к более электроотрицательному элементу. Результатом такого перехода электронов от одного атома к другому является образование заряженных частиц - ионов. Между ними и возникает притяжение.

Наименьшими показателями электроотрицательности обладают типичные металлы , а наибольшими - типичные неметаллы. Ионы, таким образом, образуются при взаимодействии между типичными металлами и типичными неметаллами.

Атомы металла становятся положительно заряженными ионами (катионами), отдавая электроны внешних электронных уровней, а неметаллы принимают электроны, превращаясь таким образом в отрицательно заряженные ионы (анионы).

Атомы переходят в более устойчивое энергетическое состояние, завершая свои электронные конфигурации.

Ионная связь ненаправленная и не насыщаемая, так как электростатическое взаимодействие происходит во все стороны, соответственно ион может притягивать ионы противоположного знака во всех направлениях.

Расположение ионов таково, что вокруг каждого находится определённое число противоположно заряженных ионов. Понятие «молекула» для ионных соединений смысла не имеет .

Примеры образования

Образование связи в хлориде натрия (nacl) обусловлено передачей электрона от атома Na к атому Cl с образованием соответствующих ионов:

Na 0 - 1 е = Na + (катион)

Cl 0 + 1 е = Cl — (анион)

В хлориде натрия вокруг катионов натрия расположено шесть анионов хлора, а вокруг каждого иона хлора — шесть ионов натрия.

При образовании взаимодействия между атомами в сульфиде бария происходят следующие процессы:

Ba 0 - 2 е = Ba 2+

S 0 + 2 е = S 2-

Ва отдаёт свои два электрона сере в результате чего образуются анионы серы S 2- и катионы бария Ba 2+ .

Металлическая химическая связь

Число электронов внешних энергетических уровней металлов невелико, они легко отрываются от ядра. В результате такого отрыва образуются ионы металла и свобод­ные электроны. Эти электроны называются «электронным газом». Электроны свободно перемещаются по объёму металла и постоянно связываются и отрываются от атомов.

Строение вещества металла таково: кристаллическая решётка является остовом вещества, а между её узлами электроны могут свободно перемещаться.

Можно привести следующие примеры:

Mg - 2е <-> Mg 2+

Cs - e <-> Cs +

Ca - 2e <-> Ca 2+

Fe - 3e <-> Fe 3+

Ковалентная: полярная и неполярная

Наиболее распространённым видом химического взаимодействия является ковалентная связь. Значения электроотрицательности элементов, вступающих во взаимодействие, отличаются не резко, в связи с этим происходит только смещение общей электронной пары к более электроотрицательному атому.

Ковалентное взаимодействие может образовываться по обменному механизму или по донорно-акцепторному.

Обменный механизм реализуется, если у каждого из атомов есть неспаренные электроны на внешних электронных уровнях и перекрывание атомных орбиталей приводит к возникновению пары электронов, принадлежащей уже обоим атомам. Когда же у одного из атомов есть пара электронов на внешнем электронном уровне, а у другого — свободная орбиталь, то при перекрывании атомных орбиталей происходит обобществление электронной пары и взаимодействие по донорно-акцепторному механизму.

Ковалентные разделяются по кратности на:

  • простые или одинарные;
  • двойные;
  • тройные.

Двойные обеспечивают обобществление сразу двух пар электронов, а тройные — трёх.

По распределению электронной плотности (полярности) между связываемыми атомами ковалентная связь делится на:

  • неполярную;
  • полярную.

Неполярную связь образуют одинаковые атомы, а полярную - разные по электроотрицательности.

Взаимодействие близких по электроотрицательности атомов называют неполярной связью. Общая пара электронов в такой молекуле не притянута ни к одному из атомов, а принадлежит в равной мере обоим.

Взаимодействие различающихся по электроотрицательности элементов приводит к образованию полярных связей. Общие электронные пары при таком типе взаимодействия притягиваются более электроотрицательным элементом, но полностью к нему не переходят (то есть образования ионов не происходит). В результате такого смещения электронной плотности на атомах появляются частичные заряды: на более электроотрицательном — отрицательный заряд, а на менее — положительный.

Свойства и характеристика ковалентности

Основные характеристики ковалентной связи:

  • Длина определяется расстоянием между ядрами взаимодействующих атомов.
  • Полярность определяется смещением электронного облака к одному из атомов.
  • Направленность - свойство образовывать ориентированные в пространстве связи и, соответственно, молекулы, имеющие определённые геометрические формы.
  • Насыщаемость определяется способностью образовывать ограниченное число связей.
  • Поляризуемость определяется способностью изменять полярность под действием внешнего электрического поля.
  • Энергия необходимая для разрушения связи, определяющая её прочность.

Примером ковалентного неполярного взаимодействия могут быть молекулы водорода (H2) , хлора (Cl2), кислорода (O2), азота (N2) и многие другие.

H· + ·H → H-H молекула имеет одинарную неполярную связь,

O: + :O → O=O молекула имеет двойную неполярную,

Ṅ: + Ṅ: → N≡N молекула имеет тройную неполярную.

В качестве примеров ковалентной связи химических элементов можно привести молекулы углекислого (CO2) и угарного (CO) газа, сероводорода (H2S), соляной кислоты (HCL), воды (H2O), метана (CH4) , оксида серы (SO2) и многих других.

В молекуле CO2 взаимосвязь между углеродом и атомами кислорода ковалентная полярная, так как более электроотрицательный водород притягивает к себе электронную плотность. Кислород имеет два неспаренных электрона на внешнем уровне, а углерод может предоставить для образования взаимодействия четыре валентных электрона. В результате образуются двойные связи и молекула выглядит так: O=C=O.

Для того чтобы определиться с типом связи в той или иной молекуле, достаточно рассмотреть составляющие её атомы. Простые вещества металлы образуют металлическую, металлы с неметаллами — ионную, простые вещества неметаллы — ковалентную неполярную, а молекулы, состоящие из разных неметаллов, образуются посредством ковалентной полярной связью.

Всем металлам присущи такие характеристики, как:

Малое количество электронов на внешнем энергетическом уровне (кроме некоторых исключений, у которых их может быть 6,7 и 8);

Большой атомный радиус;

Низкая энергия ионизации.

Все это способствует легкому отделению внешних неспаренных электронов от ядра. При этом свободных орбиталей у атома остается очень много. Схема образования металлической связи как раз и будет показывать перекрывание многочисленных орбитальных ячеек разных атомов между собой, которые в результате и формируют общее внутрикристаллическое пространство. В него подаются электроны от каждого атома, которые начинают свободно блуждать по разным частям решетки. Периодически каждый из них присоединяется к иону в узле кристалла и превращает его в атом, затем снова отсоединяется, формируя ион.

Таким образом, металлическая связь - это связь между атомами, ионами и свободными электронами в общем кристалле металла. Электронное облако, свободно перемещающееся внутри структуры, называют "электронным газом". Именно им объясняется большинство физических свойств металлов и их сплавов.

Как конкретно реализует себя металлическая химическая связь? Примеры можно привести разные. Попробуем рассмотреть на кусочке лития. Даже если взять его размером с горошину, атомов там будут тысячи. Вот и представим себе, что каждый из этих тысяч атомов отдает свой валентный единственный электрон в общее кристаллическое пространство. При этом, зная электронное строения данного элемента, можно увидеть количество пустующих орбиталей. У лития их будет 3 (р-орбитали второго энергетического уровня). По три у каждого атома из десятков тысяч - это и есть общее пространство внутри кристалла, в котором "электронный газ" свободно перемещается.

Вещество с металлической связью всегда прочное. Ведь электронный газ не позволяет кристаллу рушиться, а лишь смещает слои и тут же восстанавливает. Оно блестит, обладает определенной плотностью (чаще всего высокой), плавкостью, ковкостью и пластичностью.



Где еще реализуется металлическая связь? Примеры веществ:

Металлы в виде простых структур;

Все сплавы металлов друг с другом;

Все металлы и их сплавы в жидком и твердом состоянии.

Конкретных примеров можно привести просто неимоверное количество, ведь металлов в периодической системе более 80!

Механизм образования в общем виде выражается следующей записью: Ме 0 - e - ↔ Ме n+ . Из схемы очевидно, какие частицы присутствуют в кристалле металла.

Любой металл способен отдавать электроны, превращаясь в положительно заряженный ион.

На примере железа: Fe 0 -2e - = Fe 2+

Куда направляются отделившиеся отрицательно заряженные частицы - электроны? Минус всегда притягивается к плюсу. Электроны притягиваются к другому иону (положительно заряженному) железа в кристаллической решетке: Fe 2+ +2e - = Fe 0

Ион становится нейтральным атомом. И такой процесс повторяется много раз.

Получается, что свободные электроны железа находятся в постоянном движении по всему объему кристалла, отрываясь и присоединяясь к ионам в узлах решетки. Другое название этого явления -делокализованное электронное облако . Термин «делокализованный» обозначает - свободный, не привязанный.

Металлическая связь возникает между атомами металлов. Характерной особенностью атомов металлов является небольшое число электронов на внешнем энергетическом уровне, слабо удерживаемых ядром, и большое число свободных атомных орбиталей с близкой энергией, поэтому металлическая связь ненасыщенная.

Валентные электроны участвуют в образовании связей сразу с 8-ю или 12-ю атомами (в соответствии с координационным числом атомов металлов). В этих условиях валентные электроны с небольшой энергией ионизации перемещаются по доступным орбиталям всех соседних атомов, обеспечивая связь между ними.

Металлическая связь характеризуется слабым взаимодействием общих электронов с ядрами соединяемых атомов и полной делокализацией этих электронов между всеми атомами в кристалле, что обеспечивает устойчивость данной связи.

Схема образования металлической связи (М – металл):

М 0 – ne М n +

Металлы имеют особую кристаллическую решётку, в узлах которой находятся как нейтральные, так и положительно заряженные атомы металла, между которыми свободно перемещаются (в пределах кристалла) обобществлённые электроны ("электронный газ"). Движение общих электронов в металлах осуще­ствляется по множеству молекулярных орбиталей, возникших за счёт слияния большого числа свободных орбиталей соединяемых атомов и охватывающих множество атомных ядер. В случае металлической связи невозможно говорить о её направленности, так как общие электроны равномерно делокализованы по всему кристаллу.

Особенности строения металлов определяют их характерные физические свойства: твёрдость, ковкость, высокую электрическую проводимость и теплопроводность, а также особый металлический блеск.

Металлическая связь характерна для металлов не только в твёрдом состоянии, но и в жидком, то есть это свойство агрегатов атомов, расположенных в непосредственной близости друг другу. В газообразном состоянии атомы металлов связаны между собой одной или несколькими ковалентными связями в молекулы, например Li 2 (Li–Li), Be 2 (Be=Be), Al 4 – каждый атом алюминия соединён с тремя другими с образованием тетраэдрической структуры:

4. Водородная связь

Водородная связь – это особый вид связи, свойственный только атомам водорода. Она возникает в тех случаях, когда атом водорода связан с атомом наиболее электроотрицательных элементов, прежде всего фтора, кислорода и азота. Рассмотрим образование водородной связи на примере фтороводорода. У электроотрицательного атома водорода имеется только один электрон, благодаря которому он может образовывать ковалентную связь с атомом фтора. При этом возникает молекула фтороводорода Н-F, в которой общая электронная пара смещена к атому фтора.

В результате такого распределения электронной плотности молекула фтороводорода представляет собой диполь, положительным полюсом которого является атом водорода. Из-за того, что связывающая электронная пара смещается к атому фтора, частично освобождается 1 s -орбиталь атома водорода и частично обнажается его ядро. У любого другого атома положительный заряд ядра после удаления валентных электронов экранируется внутренними электронными оболочками, которые обеспечивают отталкивание электронных оболочек других атомов. У атома водорода таких оболочек нет, его ядро представляет собой весьма малую (субатомную) положительно заряженную частицу – протон (диаметр протона примерно в 10 5 раз меньше диаметров атомов, и, вследствие отсутствия у него электронов, он притягивается электронной оболочкой других электронейтральных или отрицательно заряженных атомов).

Напряжённость электрического поля вблизи частично «обнажённого» атома водорода настолько велика, что он может активно притягивать отрицательный полюс соседней молекулы. Поскольку этим полюсом является атом фтора, имеющий три несвязывающие электронные пары, а s - орбиталь атома водорода частично вакантна, то между положительно поляризованным атомом водорода одной молекулы и отрицательно поляризованным атомом фтора соседней молекулы возникает донорно-акцепторное ваимодействие.

Таким образом, в результате совместного электростатического и донорно-акцепторного взаимодействия возникает дополнительно вторая связь с участием атома водорода. Это и есть водородная связь, …Н–F Н–F…

Она отличается от ковалентной по энергии и длине. Водородная связь более длинная и менее прочная, чем ковалентная. Энергия водородной связи 8–40 кДж/моль, а ковалентной 80–400 кДж/моль. В твёрдом фтороводороде длина ковалентной связи Н–F равна 95 пм, длина водородной связи F Н равна 156 пм. Благодаря водородной связи между молекулами HF кристаллы твёрдого фтороводорода состоят из бесконечных пло­ских зигзагообразных цепей, так как образующаяся за счет водородной связи система из трех атомов, как правило, линейна.

Водородные связи между молекулами HF частично сохраняются в жидком и даже в газообразном фтороводороде.

Водородная связь условно записывается в виде трёх точек и изображается следующим образом:

где X, Y – атомы F, O, N, Cl, S.

Энергия и длина водородной связи определяются дипольным моментом связи H–X и размером атома Y. Длина водородной связи уменьшается, а её энергия возрастает с увеличением разности электроотрицательностей атомов X и Y (и соответственно дипольного момента связи H–X) и с уменьшением размера атома Y.

Водородные связи образуются также между молекулами, в которых имеются связи О–Н (например, вода H 2 O, хлорная кислота НClO 4 , азотная кислота HNO 3 , карбоновые кислоты RCOOH, фенол C 6 H 5 OH, спирты ROH) и N–Н (например, аммиак NH 3 , тиоциановая кислота HNCS, органические амиды RCONH 2 и амины RNH 2 и R 2 NH).

Вещества, молекулы которых соединены водородными связями, отличаются по своим свойствам от веществ, аналогичных им по строению молекул, но не образующих водородных связей. Температуры плавления и кипения гидридов элементов IVA-группы, в которых нет водородных связей, плавно понижаются с уменьшением номера периода (рис. 15).У гидридов элементов групп VA-VIIA наблюдается нарушение этой зависимости. Три вещества, молекулы которых соединены водородными связями (аммиак NH 3 , вода Н 2 О и фтороводород HF), имеют гораздо более высокие температуры плавления и кипения, чем их аналоги (рис. 15). Кроме того, эти вещества имеют более широкие температурные интервалы существования в жидком состоянии, более высокие теплоты плавления и испарения.

Важную роль водородная связь играет в процессах растворения и кристаллизации веществ, а также при образовании кристаллогидратов.

Водородная связь может образовываться не только между молеку­лами (межмолекулярная водородная связь, МВС) , как это имеет место в рассмотренных выше примерах, но и между атомами од­ной и той же молекулы (внутримолекулярная водородная связь, ВВС) . Например, благодаря внутримолекулярным водородным связям между атомами водорода аминогрупп и атомами кислорода карбонильных групп, полипептидные цепи, образующие молекулы белков, имеют спиралеобразную форму.

рисунок??????????????

Огромную роль водородные связи играют в процессах редуп­ликации и биосинтеза белков. Две нити двойной спирали ДНК (дезоксирибонуклеиновой кислоты) удерживаются вместе водородными связями. В процессе редупликации эти связи разрываются. При транскрипции синтез РНК (рибонуклеиновой кислоты) с использованием ДНК в качестве матрицы происходит также благодаря возникновению водородных связей. Оба процесса возможны потому, что водородные связи легко образуются и легко разрываются.

Рис. 15. Температуры плавления (а ) и кипения (б ) гидридов элементов групп IVА-VIIА.

Вы узнали, как взаимодействуют между собой атомы элементов-металлов и элементов-неметаллов (электроны переходят от первых ко вторым), а также атомы элементов-неметаллов между собой (неспаренные электроны внешних электронных слоёв их атомов объединяются в общие электронные пары). Теперь мы познакомимся с тем, как взаимодействуют между собой атомы элементов-металлов. Металлы обычно существуют не в виде изолированных атомов, а в виде слитка или металлического изделия. Что удерживает атомы металла в едином объёме?

Атомы большинства элементов-металлов на внешнем уровне содержат небольшое число электронов - 1, 2, 3. Эти электроны легко отрываются, а атомы превращаются в положительные ионы. Оторвавшиеся электроны перемещаются от одного иона к другому, связывая их в единое целое.

Разобраться, какой электрон принадлежал какому атому, просто невозможно. Все оторвавшиеся электроны стали общими. Соединяясь с ионами, эти электроны временно образуют атомы, потом снова отрываются и соединяются уже с другим ионом и т. д. Бесконечно происходит процесс, который можно изобразить схемой:

Следовательно, в объёме металла атомы непрерывно превращаются в ионы и наоборот. Их так и называют атом-ионами.

На рисунке 41 схематически изображено строение фрагмента металла натрия. Каждый атом натрия окружён восемью соседними атомами.

Рис. 41.
Схема строения фрагмента кристаллического натрия

Оторвавшиеся внешние электроны свободно движутся от одного образовавшегося иона к другому, соединяя, будто склеивая, ионный остов натрия в один гигантский металлический кристалл (рис. 42).

Рис. 42.
Схема металлической связи

Металлическая связь имеет некоторое сходство с ковалентной, так как основана на обобществлении внешних электронов. Однако при образовании ковалентной связи обобществляются внешние неспаренные электроны только двух соседних атомов, в то время, как при образовании металлической связи в обобществлении этих электронов участвуют все атомы. Именно поэтому кристаллы с ковалентной связью хрупки, а с металлической, как правило, пластичны, электропроводны и имеют металлический блеск.

На рисунке 43 изображена древняя золотая фигурка оленя, которой уже более 3,5 тыс. лет, но она не потеряла характерного для золота - этого самого пластичного из металлов - благородного металлического блеска.


рис. 43. Золотой олень. VI в. до н. э.

Металлическая связь характерна как для чистых металлов, так и для смесей различных металлов - сплавов, находящихся в твёрдом и жидком состояниях. Однако в парообразном состоянии атомы металлов связаны между собой ковалентной связью (например, парами натрия заполняют лампы жёлтого света для освещения улиц больших городов). Пары металлов состоят из отдельных молекул (одноатомных и двухатомных).

Вопрос о химических связях - центральный вопрос науки химии. Вы познакомились с начальными представлениями о типах химической связи. В дальнейшем вы узнаете много интересного о природе химической связи. Например, что в большинстве металлов, кроме металлической связи, есть ещё и ковалентная связь, что существуют и другие типы химических связей.

Ключевые слова и словосочетания

  1. Металлическая связь.
  2. Атом-ионы.
  3. Обобществлённые электроны.

Работа с компьютером

  1. Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.
  2. Найдите в Интернете электронные адреса, которые могут служить дополнительными источниками, раскрывающими содержание ключевых слов и словосочетаний параграфа. Предложите учителю свою помощь в подготовке нового урока - сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.

Вопросы и задания

  1. Металлическая связь имеет черты сходства с ковалентной связью. Сравните эти химические связи между собой.
  2. Металлическая связь имеет черты сходства с ионной связью. Сравните эти химические связи между собой.
  3. Как можно повысить твёрдость металлов и сплавов?
  4. По формулам веществ определите тип химической связи в них: Ва, ВаВr 2 , НВr, Вr 2 .

Химическая связь

Все взаимодействия, приводящие к объединению химических частиц (атомов, молекул, ионов и т. п.) в вещества делятся на химические связи и межмолекулярные связи (межмолекулярные взаимодействия).

Химические связи - связи непосредственно между атомами. Различают ионную, ковалентную и металлическую связь.

Межмолекулярные связи - связи между молекулами. Это водородная связь, ион-дипольная связь (за счет образования этой связи происходит, например, образование гидратной оболочки ионов), диполь-дипольная (за счет образования этой связи объединяются молекулы полярных веществ, например, в жидком ацетоне) и др.

Ионная связь - химическая связь, образованная за счет электростатического притяжения разноименно заряженных ионов. В бинарных соединениях (соединениях двух элементов) она образуется в случае, когда размеры связываемых атомов сильно отличаются друг от друга: одни атомы большие, другие маленькие - то есть одни атомы легко отдают электроны, а другие склонны их принимать (обычно это атомы элементов, образующих типичные металлы и атомы элементов, образующих типичные неметаллы); электроотрицательность таких атомов также сильно отличается.
Ионная связь ненаправленная и не насыщаемая.

Ковалентная связь - химическая связь, возникающая за счет образования общей пары электронов. Ковалентная связь образуется между маленькими атомами с одинаковыми или близкими радиусами. Необходимое условие - наличие неспаренных электронов у обоих связываемых атомов (обменный механизм) или неподеленной пары у одного атома и свободной орбитали у другого (донорно-акцепторный механизм):

а) H· + ·H H:H H-H H 2 (одна общая пара электронов; H одновалентен);
б) NN N 2 (три общие пары электронов; N трехвалентен);
в) H-F HF (одна общая пара электронов; H и F одновалентны);
г) NH 4 + (четыре общих пары электронов; N четырехвалентен)
    По числу общих электронных пар ковалентные связи делятся на
  • простые (одинарные) - одна пара электронов,
  • двойные - две пары электронов,
  • тройные - три пары электронов.

Двойные и тройные связи называются кратными связями.

По распределению электронной плотности между связываемыми атомами ковалентная связь делится на неполярную и полярную . Неполярная связь образуется между одинаковыми атомами, полярная - между разными.

Электроотрицательность - мера способности атома в веществе притягивать к себе общие электронные пары.
Электронные пары полярных связей смещены в сторону более электроотрицательных элементов. Само смещение электронных пар называется поляризацией связи. Образующиеся при поляризации частичные (избыточные) заряды обозначаются + и -, например: .

По характеру перекрывания электронных облаков ("орбиталей") ковалентная связь делится на -связь и -связь.
-Связь образуется за счет прямого перекрывания электронных облаков (вдоль прямой, соединяющей ядра атомов), -связь - за счет бокового перекрывания (по обе стороны от плоскости, в которой лежат ядра атомов).

Ковалентная связь обладает направленностью и насыщаемостью, а также поляризуемостью.
Для объяснения и прогнозирования взаимного направления ковалентных связей используют модель гибридизации.

Гибридизация атомных орбиталей и электронных облаков - предполагаемое выравнивание атомных орбиталей по энергии, а электронных облаков по форме при образовании атомом ковалентных связей.
Чаще всего встречается три типа гибридизации: sp -, sp 2 и sp 3 -гибридизация. Например:
sp -гибридизация - в молекулах C 2 H 2 , BeH 2 , CO 2 (линейное строение);
sp 2 -гибридизация - в молекулах C 2 H 4 , C 6 H 6 , BF 3 (плоская треугольная форма);
sp 3 -гибридизация - в молекулах CCl 4 , SiH 4 , CH 4 (тетраэдрическая форма); NH 3 (пирамидальная форма); H 2 O (уголковая форма).

Металлическая связь - химическая связь, образованная за счет обобществления валентных электронов всех связываемых атомов металлического кристалла. В результате образуется единое электронное облако кристалла, которое легко смещается под действием электрического напряжения - отсюда высокая электропроводность металлов.
Металлическая связь образуется в том случае, когда связываемые атомы большие и потому склонны отдавать электроны. Простые вещества с металлической связью - металлы (Na, Ba, Al, Cu, Au и др.), сложные вещества - интерметаллические соединения (AlCr 2 , Ca 2 Cu, Cu 5 Zn 8 и др.).
Металлическая связь не обладает направленностью насыщаемостью. Она сохраняется и в расплавах металлов.

Водородная связь - межмолекулярная связь, образованная за счет частичного акцептирования пары электронов высокоэлектроотрицательнного атома атомом водорода с большим положительным частичным зарядом. Образуется в тех случаях, когда в одной молекуле есть атом с неподеленной парой электронов и высокой электроотрицательностью (F, O, N), а в другой - атом водорода, связанный сильно полярной связью с одним из таких атомов. Примеры межмолекулярных водородных связей:

H—O—H ··· OH 2 , H—O—H ··· NH 3 , H—O—H ··· F—H, H—F ··· H—F.

Внутримолекулярные водородные связи существуют в молекулах полипептидов, нуклеиновых кислот, белков и др.

Мерой прочности любой связи является энергия связи.
Энергия связи - энергия необходимая для разрыва данной химической связи в 1 моле вещества. Единица измерений - 1 кДж/моль.

Энергии ионной и ковалентной связи - одного порядка, энергия водородной связи - на порядок меньше.

Энергия ковалентной связи зависит от размеров связываемых атомов (длины связи) и от кратности связи. Чем меньше атомы и больше кратность связи, тем больше ее энергия.

Энергия ионной связи зависит от размеров ионов и от их зарядов. Чем меньше ионы и больше их заряд, тем больше энергия связи.

Строение вещества

По типу строения все вещества делятся на молекулярные и немолекулярные . Среди органических веществ преобладают молекулярные вещества, среди неорганических - немолекулярные.

По типу химической связи вещества делятся на вещества с ковалентными связями, вещества с ионными связями (ионные вещества) и вещества с металлическими связями (металлы).

Вещества с ковалентными связями могут быть молекулярными и немолекулярными. Это существенно сказывается на их физических свойствах.

Молекулярные вещества состоят из молекул, связанных между собой слабыми межмолекулярными связями, к ним относятся: H 2 , O 2 , N 2 , Cl 2 , Br 2 , S 8 , P 4 и другие простые вещества; CO 2 , SO 2 , N 2 O 5 , H 2 O, HCl, HF, NH 3 , CH 4 , C 2 H 5 OH, органические полимеры и многие другие вещества. Эти вещества не обладают высокой прочностью, имеют низкие температуры плавления и кипения, не проводят электрический ток, некоторые из них растворимы в воде или других растворителях.

Немолекулярные вещества с ковалентными связями или атомные вещества (алмаз, графит, Si, SiO 2 , SiC и другие) образуют очень прочные кристаллы (исключение - слоистый графит), они нерастворимы в воде и других растворителях, имеют высокие температуры плавления и кипения, большинство из них не проводит электрический ток (кроме графита, обладающего электропроводностью, и полупроводников - кремния, германия и пр.)

Все ионные вещества, естественно, являются немолекулярными. Это твердые тугоплавкие вещества, растворы и расплавы которых проводят электрический ток. Многие из них растворимы в воде. Следует отметить, что в ионных веществах, кристаллы которых состоят из сложных ионов, есть и ковалентные связи, например: (Na +) 2 (SO 4 2-), (K +) 3 (PO 4 3-), (NH 4 +)(NO 3-) и т. д. Ковалентными связями связаны атомы, из которых состоят сложные ионы.

Металлы (вещества с металлической связью) очень разнообразны по своим физическим свойствам. Среди них есть жидкость (Hg), очень мягкие (Na, K) и очень твердые металлы (W, Nb).

Характерными физическими свойствами металлов является их высокая электропроводность (в отличие от полупроводников, уменьшается с ростом температуры), высокая теплоемкость и пластичность (у чистых металлов).

В твердом состоянии почти все вещества состоят из кристаллов. По типу строения и типу химической связи кристаллы ("кристаллические решетки") делят на атомные (кристаллы немолекулярных веществ с ковалентной связью), ионные (кристаллы ионных веществ), молекулярные (кристаллы молекулярных веществ с ковалентной связью) и металлические (кристаллы веществ с металлической связью).

Задачи и тесты по теме "Тема 10. "Химическая связь. Строение вещества"."

  • Типы химической связи - Строение вещества 8–9 класс

    Уроков: 2 Заданий: 9 Тестов: 1

  • Заданий: 9 Тестов: 1

Проработав эту тему, Вы должны усвоить следующие понятия: химическая связь, межмолекулярная связь, ионная связь, ковалентная связь, металлическая связь, водородная связь, простая связь, двойная связь, тройная связь, кратные связи, неполярная связь, полярная связь, электроотрицательность, поляризация связи, - и -связь, гибридизация атомных орбиталей, энергия связи.

Вы должны знать классификацию веществ по типу строения, по типу химической связи, зависимость свойств простых и сложных веществ от типа химической связи и типа "кристаллической решетки".

Вы должны уметь: определять тип химической связи в веществе, тип гибридизации, составлять схемы образования связей, пользоваться понятием электроотрицательность, рядом электроотрицательностей; знать как меняется электроотрицательность у химических элементов одного периода, и одной группы для определения полярности ковалентной связи.

Убедившись, что все необходимое усвоено, переходите к выполнению заданий. Желаем успехов.


Рекомендованная литература:
  • О. С. Габриелян, Г. Г. Лысова. Химия 11 кл. М., Дрофа, 2002.
  • Г. Е. Рудзитис, Ф. Г. Фельдман. Химия 11 кл. М., Просвещение, 2001.